
Mechatronic Modeling and Design with 
Applications in Robotics

Basic Model Elements



The field of mechatronics primarily concerns the integration of mechanics and electronics. 
(e.g., mechanical, fluid, thermal and electrical/electronic systems)

They can serve functions of 
ØStructural support
ØLoad bearing 
ØMobility
ØTransmission of motion and energy
ØActuation
ØManipulation
ØSensing
ØControl
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https://en.wikipedia.org/wiki/Mechatronics
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Required and needed in this course:

Ø Mechanical Components

Ø Electrical Elements

Should understand: 

Ø Fluid Elements

Ø Thermal Elements
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Across Variable: Varies Across Element (e.g., Velocity, Voltage, Temperature, Pressure)

Through Variable: Remains Unchanged Through Element (e.g., Force, Current, Heat 
Transfer Rate, Fluid Flow Rate)
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Mass Spring Damper

Sources: Velocity and force/torque

Variables: Velocity (across variable) and force (through variable)
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Mass (Inertia) Element (A-Type Element)

Constitutive Equation (Newton’s 2nd Law): 

𝑓 = 𝑚
𝑑𝑣
𝑑𝑡

where m = mass(inertia)
Power = f v = rate of change of energy è

𝐸 = (𝑓𝑣𝑑𝑡 = (𝑚
𝑑𝑣
𝑑𝑡
𝑣𝑑𝑡 = (𝑚𝑣𝑑𝑣

è Energy 𝐸 = !
"
𝑚𝑣" (Kinetic Energy) è Energy storage element
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Ø An inertia is an energy storage element (kinetic energy).

Ø Velocity (across variable) represents the state of an inertia element è “A-Type 
Element”

Note: 1. Velocity at any t is completely determined from initial velocity and the applied force; 2. Energy of 
inertia element is represented by v along.

Ø Hence, v is a natural output (or response) variable for an inertia element, which can 
represent its dynamic state (i.e., state variable), and f is a natural input variable for an 
inertia element.

Ø Velocity across an inertia element cannot change instantaneously unless an infinite force 
is applied to it.
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Spring (Stiffness) Element (T-Type Element)

Constitutive Equation (Hooke’s Law): 
𝑑𝑓
𝑑𝑡 = 𝑘𝑣

where k=stiffness

Note: Differentiated version of familiar force-deflection Hooke’s law in order to use 
velocity (as for inertia element)

𝐸 = (𝑓𝑣𝑑𝑡 = (𝑓
1
𝑘
𝑑𝑓

èEnergy 𝐸 = !
"
#!

$ (Elastic potential energy)
èEnergy storage element
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Ø A spring (stiffness element) is an energy storage element (elastic potential energy).

Ø Force (through variable) represents state of spring element è “T-Type Element”.
Note:  1. Spring force of a spring at time t is completely determined from initial force and applied velocity; 2. 
Spring energy is represented by f alone.  

Ø Force f is a natural output (response) variable, and v is a natural input variable for a 
stiffness element.

Ø Force through a stiffness element cannot change instantaneously unless an infinite 
velocity is applied to it.
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Damping (Dissipation) Element (D-Type Element)

Constitutive Equation: 𝑓 = 𝑏𝑣
where b=damping constant (damping coefficient); for viscous damping

The power dissipated depending on the velocity v:

𝑃 = 𝑏𝑣"
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Ø Mechanical damper is an energy dissipating element (D-Type Element).

Ø Either force f or velocity v may represent its state.

Ø No new state variable is defined by this element.
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Rotational Mass:

𝐸 =
1
2
𝐼𝜔"

Torsional Spring:

𝐸 =
1
2
𝑇"

𝑘

Rotary Damper:
𝑃 = 𝑐𝜔"
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Capacitor Inductor Resistor

Sources: Voltage and current

Variables: Voltage (across variable) and current (through variable)
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Variables:  Voltage (across variable) and the current (through variable) 

Capacitor Element (A-Type Element)

Constitutive Equation: 𝐶 %&
%' = 𝑖

where C = capacitance

Power = iv è Energy 𝐸 = ∫ 𝑖𝑣𝑑𝑡 = ∫ 𝐶 %&
%'
𝑣𝑑𝑡 = ∫ 𝐶𝑣𝑑𝑣è

Energy 𝐸 = !
"𝐶𝑣

" (electrostatic energy) è Energy storage element
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Ø Voltage (across variable) is state variable for a capacitor è “A-Type Element”.

Ø Voltage is a natural output variable and current is a natural input variable for a capacitor.

Ø Voltage across a capacitor cannot change instantaneously unless an infinite current is 
applied. 
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Inductor Element (T-Type Element)

Constitutive Equation: 𝐿 %(
%'
= 𝑣

where L = inductance 

Energy 𝐸 = !
"𝐿𝑖

" (Electromagnetic energy)
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Ø Current (through variable) is state variable for an inductor è “T-Type Element”.

Ø Current is a natural output variable and voltage is a natural input variable for an 
inductor.

Ø Current through an inductor cannot change instantaneously unless an infinite voltage is 
applied. 
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Resistor Element (D-Type Element)

Constitutive Equation: 𝑣 = 𝑅𝑖 (Ohm’s law)
where R = resistance 

Observations: 
1. This is an energy dissipating element (D-Type Element)

2. Either i or v may represent the state

3. No new state variable is defined by this element.
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Note: 
§ Voltage is a natural output variable and current is a natural input variable for a capacitor.

§ Current is a natural output variable; voltage is a natural input variable and voltage is a 
natural state variable for an inductor. 
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Components Constitutive 
Equation

Energy Stored or 
Power Dissipated

Capacitor
𝑖 = 𝐶

𝑑𝑣
𝑑𝑡

𝐸 = !
"𝐶𝑣

"

Inductor
𝑣 = 𝐿

𝑑𝑖
𝑑𝑡

𝐸 = !
"
𝐿𝑖"

Resistor 𝑣 = 𝑖𝑅 𝑃 = &!

) or 𝑃 = 𝐼"𝑅
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System Type
System-Variables:

Mechanical Electrical

Through-Variables Force f Current i

Across- Variables Velocity v Voltage v

System
Parameters

m
k
b

C
1/L
1/R
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Variables: Across variable temperature (T) and through variable heat transfer rate (Q). 
 
Thermal Capacitor (A-Type Element) 
Consider control volume V of fluid with, density r, and specific heat c.   

Constitutive Equation: Net heat transfer rate into the control volume   è      

    
         = thermal capacitance of control volume 
 
Observations: 
Temperature T is state variable for thermal capacitor (from usual argument) è  
“A-Type Element” 
Heat transfer rate Q is natural input and temperature T is natural output for this element 
This is a storage element (stores thermal energy) 
 
 
Note: There is no thermal “inductor” like storage element with state variable Q .   

dTQ Vc
dt

r=

C dT
dt

Qt =

C vct = r
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Thermal Resistance (D-Type Element) 
Three basic processes of heat transfer è three different types of thermal resistance  
 
Constitutive Relations 

Conduction:  Q
kA
x
T=

Δ   
k = conductivity; A = area of cross section of the heat conduction element; Δx = length of heat 
conduction that has a temperature drop of T. 

è Conductive resistance R x
kAk =
Δ  

 
Convection:   Q h ATc=   
hc = convection heat transfer coefficient; A = area of heat convection surface with temperature drop 
T 
 

è  Conductive resistance R h Ac
c

=
1

  
 
Radiation:   Q F F A T TE A= −σ ( )1

4
2
4   è a nonlinear thermal resistor  

σ = Stefan-Boltzman constant 
FE = effective emmisivity of the radiation source (of temperature T1) 
FA = shape factor of the radiation receiver (of temperature T2) 
A = effective surface area of the receiver. 
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Variables: Pressure (across variable) P  and volume flow rate (through variable) Q  
 
Fluid Capacitor (A-Type Element) 
Constitutive Equation: C dP

dt
Qf =  

Note 1: Stores potential energy (a “fluid spring”)  
Note 2: Pressure (across variable) is state variable  
              for fluid capacitor è “A-Type Element” 
 
Three Types: Fluid compression; Flexible container; Gravity head 
1a. For liquid control volume V of bulk modulus b :     C V

bulk = b   
1b. For isothermal (constant temperature, slow-process) gas of volume V and pressure:  
C

V
Pcomp =   

1. For adiabatic (zero heat transfer, fast-process) gas:   C
V
kPcomp =      

k
c
c
p

v
=  = ratio of specific heats at constant pressure and constant volume 

2. For incompressible fluid in a flexible vessel of area A and stiffness k:      C
A
kelastic =
2

 
Note:  For a fluid with bulk modulus, the equivalent capacitance =C Cbulk elastic+ . 
3. For incompressible fluid column of area of cross-section A and density r:  C A

ggrav = r  
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Fluid Inertor (T-Type Element) 
 

Constitutive Equation: f
dQI P
dt

=   
 
Note 1: Volume flow rate Q (through variable) is state variable for fluid inertor è  
              “T-type Element”   
Note 2: It stores kinetic energy, unlike the mechanical T-type element (spring), which 
stores potential energy.   
 
With uniform velocity distribution across A over length segment Δx : 
  Fluid inertance   I

x
Af = ρ
Δ

  
 

For a non-uniform velocity distribution: 
            Fluid inertance I

x
Af = αρ
Δ

   (correction factor α) 
For a pipe of circular cross-section with a parabolic velocity distribution, α = 2 0.  
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Fluid Resistor (D-Type Element) 
 
 
 
Constitutive Equation (Linear): P R Qf=   

 

Constitutive Equation (Nonlinear):   P K QR
n=   

                                                          (KR and n are parameters of nonlinearity) 
 
For Viscous Flow Through a Uniform Pipe:  

(a) With circular cross-section of diameter d:  R
x
df = 128 4µ
π

Δ
  

(b) With rectangular cross-section of height b << width w:    R
x

wbf = 12 3µ
Δ

  

Note: µ = absolute viscosity (or, dynamic viscosity); υ = kinematic viscosity  
          with µ υρ=   
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System Type
Constitutive Relation for

Energy Storage Elements Energy Dissipating Elements

A-Type
(Across) Element

T-Type
(Through) Element

D-Type
(Dissipative) Element

Translatory-
Mechanical
v = velocity
f = force

Mass
(Newton’s 2nd
Law)
m = mass

Spring
(Hooke’s Law)
k = stiffness

Viscous Damper
b = damping constant

Electrical
v = voltage
i = current

Capacitor
C = capacitance

Inductor
L = inductance

Resistor
R = resistance

Thermal
T = temperature

difference
Q = heat transfer rate

Thermal Capacitor
Ct = thermal 
capacitance

None Thermal Resistor
Rt = thermal resistance

Fluid
P = pressure

difference
Q = volume flow rate

Fluid Capacitor
Cf = fluid
capacitance

Fluid Inertor
If= inertance

Fluid Resistor
Rf = fluid resistance
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System Type Through Variable Across Variable

Hydraulic/Pneumatic Flow Rate Pressure

Electrical Current Voltage

Mechanical Force Velocity

Thermal Heat Transfer Temperature



Suspension of a car

Page 30 of  33Building Up Mechanical Systems

Road surface
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Electrical Circuit

Page 31 of  33Building Up Electrical Systems

u(V)

R

y3(A)

C1
+

_

y2(A)

L
C2 +

_
y1(V)

+
_

R1

R2



DC Motor (will discuss it in detail in later chapter)
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ea(t)

ia(t) Ra La

eb(t) Jm
Bm

Armature circuit Mechanical load

Input

Output



The End!!


