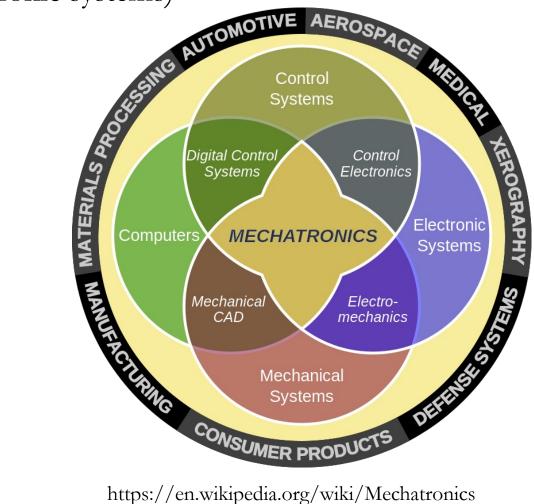
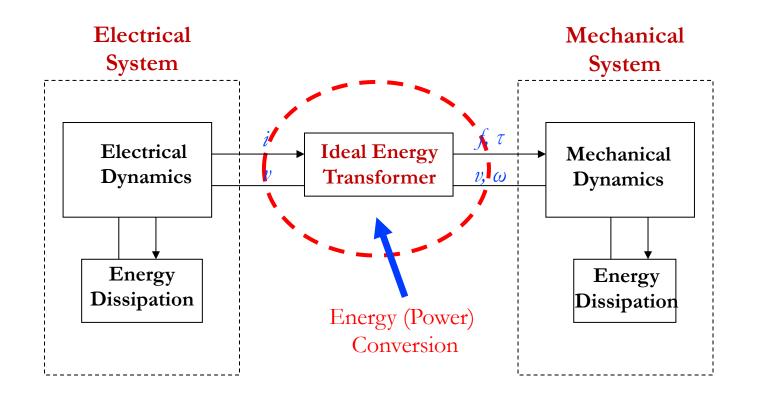


General Robotics & Autonomous Systems and Processes

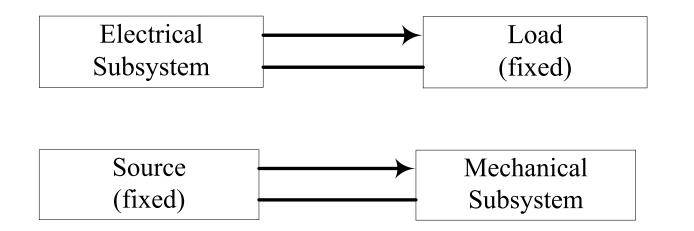

Mechatronic Modeling and Design with Applications in Robotics

Basic Model Elements

The field of mechatronics primarily concerns the integration of mechanics and electronics. (e.g., mechanical, fluid, thermal and electrical/electronic systems)


They can serve functions of

- Structural support
- \blacktriangleright Load bearing
- ► Mobility
- \blacktriangleright Transmission of motion and energy
- \blacktriangleright Actuation
- ► Manipulation
- ➤ Sensing
- ➢ Control


https://en.wikipedia.org/wiki/Mechatronics

Electromechanical System

An electromechanical system / mechatronic system

Page 4 of 33

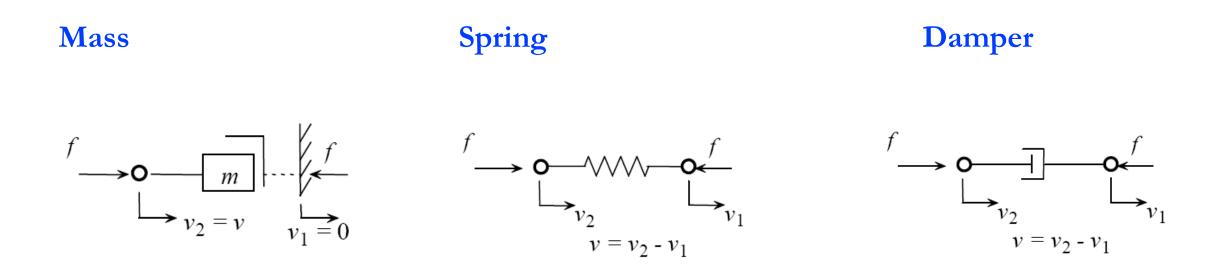
Energy (or Power)

Bandwidth (e.g., Speed and Time Constant)

Basic Electrical Components

Required and needed in this course:

- Mechanical Components
- Electrical Elements


Should understand:

- Fluid Elements
- ➤ Thermal Elements

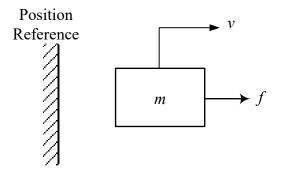
Across Variable: Varies Across Element (e.g., Velocity, Voltage, Temperature, Pressure)

Through Variable: Remains Unchanged Through Element (e.g., Force, Current, Heat Transfer Rate, Fluid Flow Rate)

Mechanical Elements

Sources: Velocity and force/torque

Variables: Velocity (across variable) and force (through variable)


Mass (Inertia) Element (A-Type Element)

Constitutive Equation (Newton's 2nd Law): $f = m \frac{d\nu}{dt}$

where m = mass(inertia)Power = f v = rate of change of energy \rightarrow

$$E = \int f v dt = \int m \frac{dv}{dt} v dt = \int m v dv$$

→ Energy $E = \frac{1}{2}mv^2$ (Kinetic Energy) → Energy storage element

- An inertia is an energy storage element (kinetic energy).

Note: 1. Velocity at any *t* is completely determined from initial velocity and the applied force; 2. Energy of inertia element is represented by *v* along.

- Hence, v is a natural output (or response) variable for an inertia element, which can represent its dynamic state (i.e., state variable), and f is a natural input variable for an inertia element.
- Velocity across an inertia element cannot change instantaneously unless an infinite force is applied to it.

Page 10 of 33

 $\begin{array}{c} x \\ \downarrow \rightarrow \\ \\ & \downarrow \rightarrow \\ \\ & k \end{array} \rightarrow f = kx$

Spring (Stiffness) Element (T-Type Element)

Constitutive Equation (Hooke's Law): $\frac{df}{dt} = kv$

where *k*=stiffness

Note: Differentiated version of familiar force-deflection Hooke's law in order to use velocity (as for inertia element)

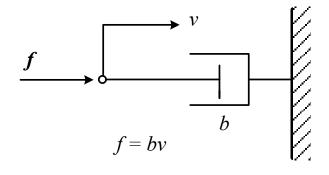
$$E = \int f v dt = \int f \frac{1}{k} df$$

→ Energy $E = \frac{1}{2} \frac{f^2}{k}$ (Elastic potential energy) → Energy storage element A spring (stiffness element) is an energy storage element (elastic potential energy).

Force (through variable) represents state of spring element \rightarrow "T-Type Element". Note: 1. Spring force of a spring at time *t* is completely determined from initial force and applied velocity; 2. Spring energy is represented by *f* alone.

- Force f is a natural output (response) variable, and v is a natural input variable for a stiffness element.
- Force through a stiffness element cannot change instantaneously unless an infinite velocity is applied to it.

Mechanical Element: Damping (Dissipation)


Damping (Dissipation) Element (D-Type Element)

Constitutive Equation: f = bv

where *b*=damping constant (damping coefficient); for viscous damping

The power dissipated depending on the velocity *v*:

$$P = bv^2$$

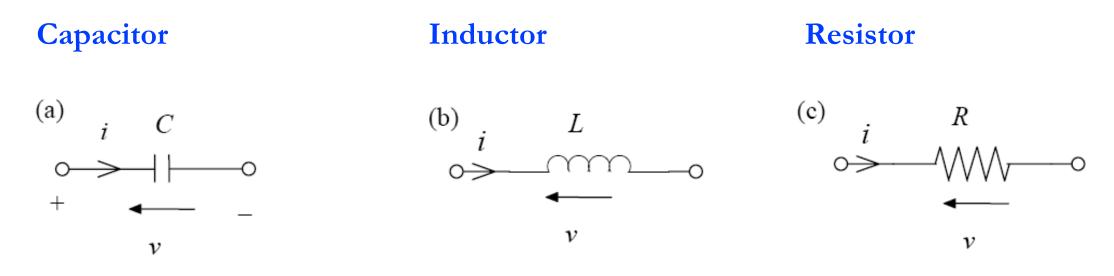
Observations: Damping (Dissipation)

- \blacktriangleright Mechanical damper is an energy dissipating element (*D*-Type Element).
- \succ Either force *f* or velocity *v* may represent its state.
- \succ No new state variable is defined by this element.

Rotational Elements

Rotational Mass:

$$E = \frac{1}{2}I\omega^2$$

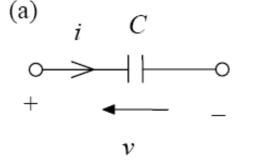

Torsional Spring:

$$E = \frac{1}{2} \frac{T^2}{k}$$

Rotary Damper:

$$P = c\omega^2$$

Electrical Elements


Sources: Voltage and current

Variables: Voltage (across variable) and current (through variable)

Variables: Voltage (across variable) and the current (through variable)

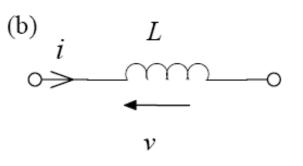
Capacitor Element (A-Type Element)

Constitutive Equation: $C \frac{dv}{dt} = i$ where C = capacitance

Power =
$$iv \rightarrow$$
 Energy $E = \int ivdt = \int C \frac{dv}{dt} v dt = \int Cvdv \rightarrow$

Energy $E = \frac{1}{2}Cv^2$ (electrostatic energy) \rightarrow Energy storage element

 \blacktriangleright Voltage (across variable) is state variable for a capacitor \rightarrow "A-Type Element".


> Voltage is a natural output variable and current is a natural input variable for a capacitor.

Voltage across a capacitor cannot change instantaneously unless an infinite current is applied.

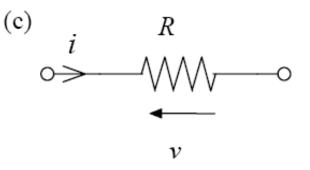
Inductor Element (T-Type Element)

Constitutive Equation:
$$L\frac{di}{dt} = v$$

where $L =$ inductance

Energy
$$E = \frac{1}{2}Li^2$$
 (Electromagnetic energy)

 \succ Current (through variable) is state variable for an inductor \rightarrow "T-Type Element".


Current is a natural output variable and voltage is a natural input variable for an inductor.

Current through an inductor cannot change instantaneously unless an infinite voltage is applied.

Page 20 of 33

Resistor Element (D-Type Element)

Constitutive Equation: v = Ri (Ohm's law) where R = resistance

Observations:

- 1. This is an energy dissipating element (**D-Type Element**)
- 2. Either i or v may represent the state
- 3. No new state variable is defined by this element.

Components	Constitutive Equation	Energy Stored or Power Dissipated
Capacitor	$i = C \frac{dv}{dt}$	$E = \frac{1}{2}Cv^2$
Inductor	$v = L \frac{di}{dt}$	$E = \frac{1}{2}Li^2$
Resistor	v = iR	$P = \frac{v^2}{R} \text{ or } P = I^2 R$

Note:

- Voltage is a natural output variable and current is a natural input variable for a capacitor.
- Current is a natural output variable; voltage is a natural input variable and voltage is a natural state variable for an inductor.

System Type System-Variables:	Mechanical	Electrical
Through-Variables	Force f	Current i
Across- Variables	Velocity v	Voltage v
System	m	С
Parameters	k	1/L
	b	1/R

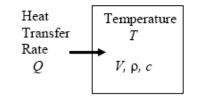
Variables: Across variable temperature (T) and through variable heat transfer rate (Q).

Thermal Capacitor (A-Type Element)

Consider control volume V of fluid with, density ρ , and specific heat c.

Constitutive Equation: Net heat transfer rate into the control volume $Q = \rho V c \frac{dT}{dt}$

 $C_t = \rho vc$ = thermal capacitance of control volume


Observations:

 $C_t \frac{dT}{dt} = Q$

Temperature *T* is state variable for thermal capacitor (from usual argument) \rightarrow "A-Type Element"

Heat transfer rate Q is natural input and temperature T is natural output for this element This is a storage element (stores thermal energy)

Note: There is no thermal "inductor" like storage element with state variable Q.

Thermal Elements (cont'd)

Thermal Resistance (D-Type Element)

Three basic processes of heat transfer \rightarrow three different types of thermal resistance

Constitutive Relations

Conduction: $Q = \frac{kA}{\Delta x}T$

k = conductivity; A = area of cross section of the heat conduction element; Δx = length of heat conduction that has a temperature drop of T.

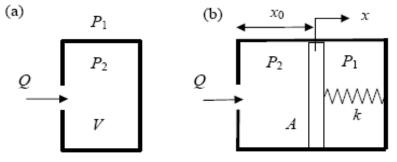
→ Conductive resistance
$$R_k = \frac{\Delta x}{kA}$$

Convection: $Q = h_c AT$ $b_c =$ convection heat transfer coefficient; A = area of heat convection surface with temperature drop T

→ Conductive resistance $R_c = \frac{1}{h_c A}$

Radiation: $Q = \sigma F_E F_A A (T_1^4 - T_2^4) \rightarrow$ a nonlinear thermal resistor

 σ = Stefan-Boltzman constant

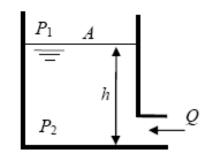

 F_E = effective emmisivity of the radiation source (of temperature T_i)

- F_{A} = shape factor of the radiation receiver (of temperature T_{2})
- A = effective surface area of the receiver.

Fluid Elements

Variables: Pressure (across variable) P and volume flow rate (through variable) Q

Fluid Capacitor (A-Type Element) Constitutive Equation: $C_f \frac{dP}{dt} = Q$ Note 1: Stores potential energy (a "fluid spring") Note 2: Pressure (across variable) is state variable for fluid capacitor \rightarrow "A-Type Element"



Three Types: Fluid compression; Flexible container; Gravity head 1a. For liquid control volume *V* of bulk modulus β : $C_{bulk} = \frac{V}{\beta}$

1b. For isothermal (constant temperature, slow-process) gas of volume V and pressure: $C_{comp} = \frac{V}{P}$

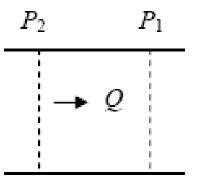
1. For adiabatic (zero heat transfer, fast-process) gas: $C_{comp} = \frac{V}{kP}$ $k = \frac{c_p}{c_{..}}$ = ratio of specific heats at constant pressure and constant volume

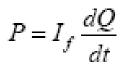
2. For incompressible fluid in a flexible vessel of area A and stiffness k: $C_{elastic} = \frac{A^2}{k}$ **Note:** For a fluid with bulk modulus, the equivalent capacitance $= C_{bulk} + C_{elastic}$. 3. For incompressible fluid column of area of cross-section A and density ρ : $C_{grav} = \frac{A}{\rho g}$ (c)

Fluid Elements (cont'd)

Constitutive Equation:
$$I_f \frac{dQ}{dt} = P$$

Note 1: Volume flow rate Q (through variable) is state variable for fluid inertor → "T-type Element"
Note 2: It stores kinetic energy, unlike the mechanical *T*-type element (spring), which stores potential energy.


With uniform velocity distribution across *A* over length segment Δx :


Fluid inertance $I_f = \rho \frac{\Delta x}{A}$

For a non-uniform velocity distribution:

Fluid inertance $I_f = \alpha \rho \frac{\Delta x}{A}$ (correction factor α)

For a pipe of circular cross-section with a parabolic velocity distribution, $\alpha = 2.0$

Fluid Elements

Page 27 of 33

Fluid Resistor (D-Type Element)

Constitutive Equation (Linear): $P = R_f Q$

 $P_2 \qquad P_1$

 $P = R_f Q$

Constitutive Equation (Nonlinear): $P = K_R Q^n$ (K_R and *n* are parameters of nonlinearity)

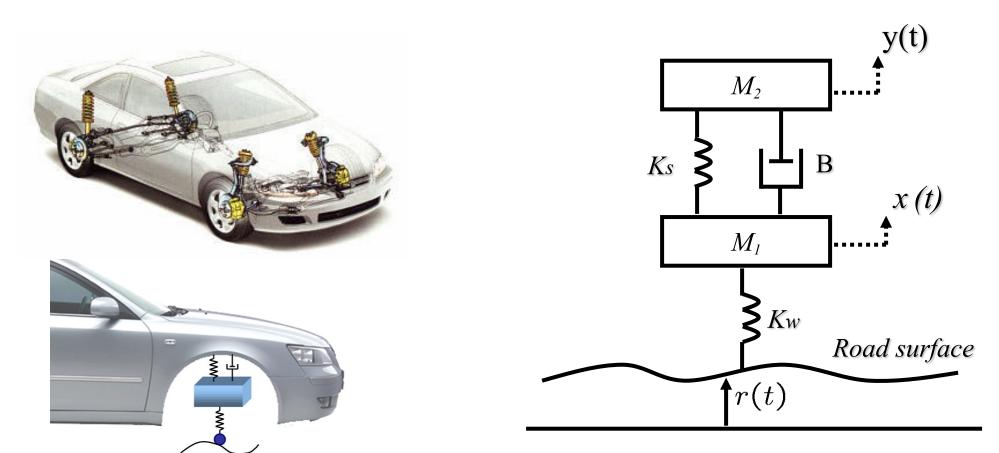
For Viscous Flow Through a Uniform Pipe:

(a) With circular cross-section of diameter *d*: $R_f = 128 \ \mu \frac{\Delta x}{\pi d^4}$

(b) With rectangular cross-section of height b << width w: $R_f = 12\mu \frac{\Delta x}{wb^3}$

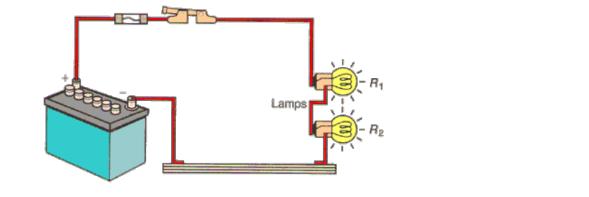
Note: μ = absolute viscosity (or, dynamic viscosity); v = kinematic viscosity with $\mu = v\rho$

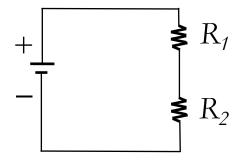
Analogies and Constitutive Relations

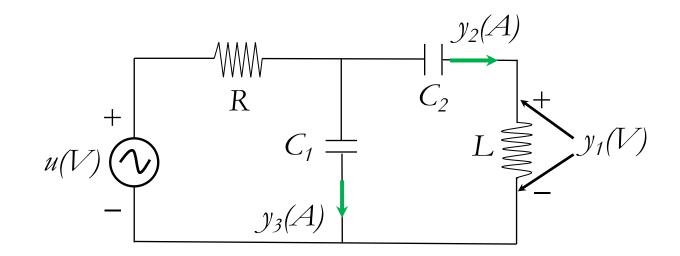

	Constitutive Relation for			
System Type	Energy Storage Elements		Energy Dissipating Elements	
	A-Type	Т-Туре	D-Type	
	(Across) Element	(Through) Element	(Dissipative) Element	
Translatory-	Mass	Spring	Viscous Damper	
Mechanical	(Newton's 2 nd	(Hooke's Law)	b = damping constant	
v = velocity	Law)	k = stiffness		
f = force	m = mass			
Electrical	Capacitor	Inductor	Resistor	
v = voltage	C = capacitance	L = inductance	R = resistance	
i = current				
Thermal	Thermal Capacitor	None	Thermal Resistor	
T = temperature	C_t = thermal		R_t = thermal resistance	
difference	capacitance			
Q = heat transfer rate				
Fluid	Fluid Capacitor	Fluid Inertor	Fluid Resistor	
P = pressure	$C_f = \text{fluid}$	$I_f = inertance$	$R_f =$ fluid resistance	
difference	capacitance			
Q = volume flow rate				

System Type	Through Variable	Across Variable
Hydraulic/Pneumatic	Flow Rate	Pressure
Electrical	Current	Voltage
Mechanical	Force	Velocity
Thermal	Heat Transfer	Temperature

Building Up Mechanical Systems

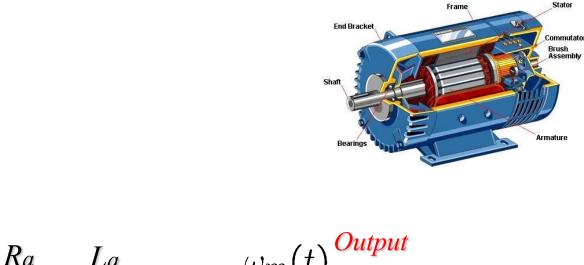

Page 30 of 33

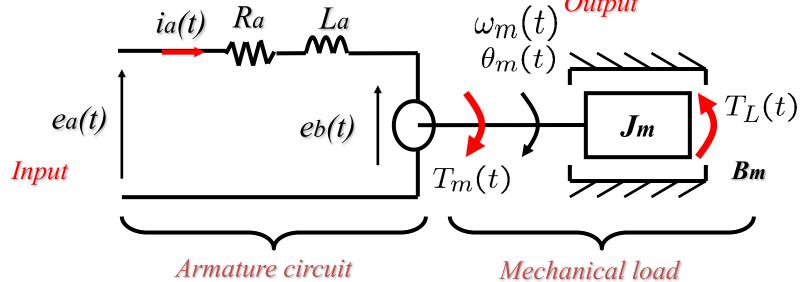

Suspension of a car



Building Up Electrical Systems

Electrical Circuit





Building Up Mechatronic Systems

Page 32 of 33

DC Motor (will discuss it in detail in later chapter)

The End!!